Oncogenic BRAF Regulates Oxidative Metabolism via PGC1α and MITF
نویسندگان
چکیده
منابع مشابه
Oncogenic BRAF Regulates Melanoma Proliferation through the Lineage Specific Factor MITF
The Microphthalmia-associated transcription factor (MITF) is an important regulator of cell-type specific functions in melanocytic cells. MITF is essential for the survival of pigmented cells, but whereas high levels of MITF drive melanocyte differentiation, lower levels are required to permit proliferation and survival of melanoma cells. MITF is phosphorylated by ERK, and this stimulates its a...
متن کاملOncogenic BRAF disrupts thyroid morphogenesis and function via twist expression
Thyroid cancer is common, yet the sequence of alterations that promote tumor formation are incompletely understood. Here, we describe a novel model of thyroid carcinoma in zebrafish that reveals temporal changes due to BRAFV600E. Through the use of real-time in vivo imaging, we observe disruption in thyroid follicle structure that occurs early in thyroid development. Combinatorial treatment usi...
متن کاملMYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRα.
Osteoporosis is a metabolic bone disorder associated with compromised bone strength and an increased risk of fracture. Inhibition of the differentiation of bone-resorbing osteoclasts is an effective strategy for the treatment of osteoporosis. Prior work by our laboratory and others has shown that MYC promotes osteoclastogenesis in vitro, but the underlying mechanisms are not well understood. In...
متن کاملMolecular pathways: BRAF induces bioenergetic adaptation by attenuating oxidative phosphorylation.
Cancers acquire mutations in cooperating pathways that sustain their growth and survival. To support continued proliferation, tumor cells adapt their metabolism to balance energy production with their augmented biosynthetic needs. Although most normal differentiated cells use mitochondrial oxidative phosphorylation (OXPHOS) as the bioenergetic source, cancer cells have been proposed to rely pri...
متن کاملBystander signaling via oxidative metabolism
The radiation-induced bystander effect (RIBE) is the initiation of biological end points in cells (bystander cells) that are not directly traversed by an incident-radiation track, but are in close proximity to cells that are receiving the radiation. RIBE has been indicted of causing DNA damage via oxidative stress, besides causing direct damage, inducing tumorigenesis, producing micronuclei, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cancer Cell
سال: 2013
ISSN: 1535-6108
DOI: 10.1016/j.ccr.2013.02.003